2 FLUTE 45° HELK FOR ALUMINUM

with Radius

GENERAL INFORMATION

2 Flute for Aluminum: Our 2 flute for aluminum end mill is very effective in all aluminum roughing applications. This tool should be used to remove heavy chip loads at increased feeds and speeds.

APPLICATION SPECIFICATIONS

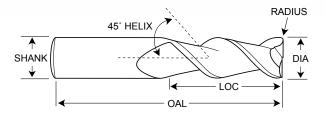
2 Flute for Aluminum: This 2 flute mill is best suited for roughing applications or when there are no finish requirements for the applications. Generally the 2 flute will rough out the part and the 4 flute will go in for the finishing cut to achieve the required finish. Our 2 flute 45° helix aluminum end mill has a special geometry which allows for high chip loads and feed rates. The small corner radius gives added strength for smoother cutting action. This mill is excellent for slotting and profiling at high speeds. Made from premium submicron grain carbide, this end mill will deliver on cost per tool ratios, getting more parts per tool than the competition.

COATING INFORMATION

ZrN: High hardness, lubricity and abrasion resistance. Improves performance over uncoated carbide in a wide variety of non-ferrous materials.

Slotting

All general information and application specifications are to be used as guides and starting points only. Because of the multitude of variables used in the milling process, use this information as a guideline only. All speeds and feeds are also suggested starting pints. They may be increased or decreased depending on machine condition, depth of cut, finish requirements, coolant, etc.



2 FLUTE **45°** HELK FOR ALUMINUM

B#=4===	SFM		Chip load per tooth							
Material	Uncoated	ZrN	1/8	1/4	5/16	3/8	1/2	5/8	3/4	1
Aluminum	800-2300	1000-2875	.0015"	.0030"	.0040"	.0050"	.0060"	.0087"	.0093"	.0100"
Aluminum Alloys (6061, 7075)	800-2300	1000-2875	.0015"	.0030"	.0040"	.0050"	.0060"	.0087"	.0093"	.0100"
Brass/Bronze	300-400	375-500	.0010"	.0020"	.0023"	.0026"	.0028"	.0045"	.0062"	.0080"
Copper	300-500	375-625	.0010"	.0020"	.0023"	.0026"	.0028"	.0045"	.0062"	.0080"
Copper Alloys	300-400	375-600	.0010"	.0020"	.0023"	.0026"	.0028"	.0045"	.0062"	.0080"
Magnesium	300-400	375-500	.0015"	.0030"	.0035"	.0040"	.0045"	.0066"	.0087"	.0100"
Plastic/Acrylic	450-1200	560-1500	.0015"	.0030"	.0040"	.0050"	.0060"	.0087"	.0093"	.0100"
Titanium Alloys (Pure)	200-400	250-500	.0010"	.0015"	.0019"	.0025"	.0030"	.0038"	.0043"	.0050"

Note: All speeds and feeds are suggested starting points. They may be increased or decreased depending on machine condition, depth of cut, finish required, coolant, etc.

Carbide end mills are manufactured on CNC grinders to insure consistent flute spacing. Carbide end mills should be used in rigid tool holders to maximize tool life.

PROBLEMS / SOLUTIONS

Problem/Cause	Solution				
Breakage					
Feed is too heavy	Reduce feed rate				
Cut is too heavy	Decrease width and depth-of-cut				
Overhang of tool is too much	Hold shank deeper, use shorter end mill				
Wear is too much	Regrind at earlier stage				
Wear					
Speed is too fast	Decrease spindle speed, use another coolant				
Hard work material	Use Coatings (TiN, TiCN, TiAIN)				
Improper speed and feed (too slow)	Increase feed and speed				
Improper helix angle	Change tool to correct helix angle				
Primary relief angle is too large	Change to smaller relief angle				
Recutting chips	Change feed and speed, Change chip size or clear chips with more coolant or ai pressure				
Short	Tool Life				
Cutting friction is too much	Regrind at earlier stage				
Hard work material	Use Coatings (TiN, TiCN, TiAIN)				
Improper helix and relief angle	Change to correct helix angle and primary relief				
Chi	pping				
Feed rate too heavy	Reduce feed rate				
Feed too heavy on first cut	Reduce feed rate on first cut				
Lack of rigidity (machine & holder)	Use better machine or tool holder or change parameters				
Lack of rigidity (tool)	Use shorter tool, hold shank deeper, try climb milling				
Tool cutting corner too sharp	Decrease primary relief and cutting angle, reduce radial width-of-cut				
Chip Packing					
Cut too heavy	Decrease width and depth-of-cut				
Not enough chip clearance	Use end mill with less flutes				
Not enough coolant	Use higher coolant pressure and reposition nozzle to point of cut or use air pressure				

PROBLEMS / SOLUTIONS

Burrs					
Wear on primary relief is too much	Regrind earlier stage				
Incorrect feed and speed rates	Correct cutting parameters				
Improper helix angle	Change to correct cutting angle				
Rough Surface Finish	Start operation with initial surface cut				
Feed rate too heavy	Reduce feed rate				
Cutting speed is too slow	Increase RPM				
Wear is too much	Regrind at earlier stage				
No end tooth concavity	Grind concave angle on bottom teeth				
Recutting chips	Change feed and speed, change chip size or clear chips with coolant or air pressure				
Chattering					
Feed and speed too fast	Correct feed and speed				
Lack of rigidity (machine & holder)	Use better machine or tool holder or change parameters				
Poor set up	Improve clamping rigidity				
Cut is too heavy	Decrease width and depth of cut				
Overhang of tool is too much	Hold shank deeper, use shorter end mill				
Lack of relief	Decrease relief angle, make margin: (touch primary with oil stone)				
Side Wall Tape	r in Work piece				
Feed rate too heavy	Reduce feed rate				
Overhang of tool is too much	Hold shank deeper, use shorter end mill				
Too few flutes	Use multi flute end mills, use end mill with higher rigidity				
No Dimensional Accuracy					
Cut is too heavy	Decrease width and depth of cut				
Lack of accuracy (machine & holder)	Repair machine or holder				
Rigidity is not enough (machine & holder)	Change machine or tool holder or change parameters				
Too few flutes	Use multi flute end mills, use end mill with higher rigidity				

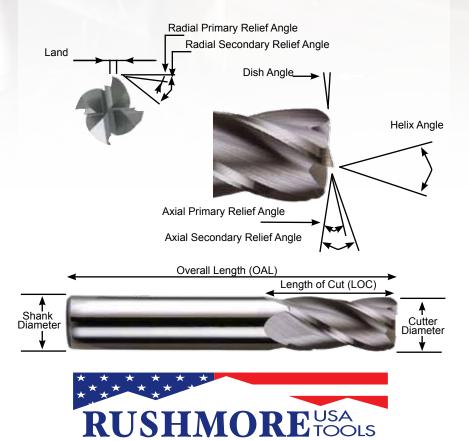
RUSHMORE USA COATING INFORMATION

Coating	TiN Titanium Nitride	TiCN Titanium Carbontride		AITIN Aluminum Titanium Nitride		
Applications	General purpose coating for machining ferrous materi- als. Less expensive than AITiN coating. Good low cost alternative to AITiN in applications not generating extreme heat.	Steels over 40 Rc and aluminum alloys.		High performance coating for ferrous materials. Excellent high temperature resistance and hardness. Maintains high surface hardness at elevated temperature improving tool life and allowing faster feed rates. Produces aluminum oxide layer at high temperature which reduces thermal conductivity transferring heat into the chip.		
Materials	General purpose ferrous materials din high s where moder tures are ger		tainless steels, speed cutting rate tempera- nerated at the edges.	Alloy steels, stainless steels, tool steels, titanium, inconel, nickel and other aerospace materials.		
Color	Gold Bro		own	Dark Grey - Black		
Structure	Mono-layer	Multi	-layer	Multi-layer		
Hardness	24GPa 370		GPa	Up to 38GPa		
Thermal Stability	1100° F 750)° F	1450° F		
Coating	nACo Aluminum Titanium Nitride + Silicon Nitride		ZrN Zirconium Nitride			
Applications	Is an extremely high heat resis with high nanohardness. Esp for high performance milling with rigid set ups. nACo's har from it's nano-composite struc consists of nano crystalline embedded in an amorphous matrix.	and drilling dness comes ture. Coating AITiN grains	High hardness, lubricity and abrasion resistance. Improves performance over uncoated carbide in a wide variety of non- ferrous materials. Less expensive alternative to diamond.			
Materials	Alloy steels, stainless steels titanium, inconel, nickel and ot materials.		Abrasive non- ferrous alloys such as Brass, Bronze, Copper and Abrasive Aluminum Alloys			
Color	Black		Light Gold			
Structure	Multi-layer		Mono-layer			
Hardness	45GPa		24.6GPa			
Thermal Stability	1652° F		1100°F			

34

RUSHMORE USA COATING INFORMATION

Material	Hardness	1st Choice	2nd Choice
Aluminum		ZrN	TiCN
Alloy Steel	16-23 HRc	AlTiN	TiCN
Alloy Steel	23-38 HRc	AITiN	nACo
Alloy Steel	>38 HRc	nACo	AITiN
Carbon Steel	16-23 HRc	AITiN	TiCN
Carbon Steel	23-38 HRc	AITiN	nACo
Carbon Steel	>38 HRc	nACo	AITiN
Hardened Steel	>42 HRc	nACo	AITiN
Low Carbon Steel	13-23 HRc	AITiN	TiCN
Low Carbon Steel	23-38 HRc	AITiN	nACo
Low Carbon Steel	>38 HRc	nACo	AITiN
Gray Cast Iron	18-22 HRc	nACo	AITiN
Nodular Cast Iron	22-32 HRc	TiCN	nACo
Austenetic Stainless Steel	<35 HRc	TiCN	nACo
Martinsitic Stainless Steel	<35 HRc	nACo	AITiN
Martinsitic Stainless Steel	>=35 HRc	nACo	AITiN
Ni Alloys		nACo	AITiN
PH Stainless Steel	<35 HRc	nACo	AITiN
PH Stainless Steel	>=35 HRc	nACo	AITiN
Ni, Co, Fe, Based Superalloys		nACo	AITiN
High Si Aluminum		ZrN	TiCN
Titanium		nACo	AITiN



ECHNICAL GUIDE Confidential information for Rushmore sales purposes only.

Solid carbide end mills are rapidly replacing high speed steel end mills because production costs can be reduced as a result of the extreme metal removal rates which can be achieved with solid carbide end mills. When combined with the appropriate coating and the correct set up, optimal performance may be achieved.

It is important to comply with the following for the best performance results: Machine Capability: The machine must have the necessary rigidity to minimize spindle deflection and sufficient horsepower to perform at recommended speeds and feeds. Holders: Tool holders and collets must provide good concentricity between tool and machine spindle.

Workpiece: A secure and rigid workpiece to minimize deflection is needed. This is most important in climb milling operations. Because of the rigidity factor required in climb milling, speeds and feeds may be reduced by up to 25%.

